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Monte Carlo simulations are performed for pure and site-diluted Ising ferro- 
and ferrimagnets on a simple cubic lattice with up to 403 sites and with impurity 
concentration x. For the diluted ferromagnet ( x=0 .2 )  the exponent f l=  
0.392 + 0.03 is definitely larger than the pure model value of fl = 0.304 _+ 0.03. In 
contrast, for ferrimagnetic systems ( x = 0 ,  0.1, 0.2) the fl values appear to be 
independent of x and within the error limits consistent with the value for the 
pure ferromagnet, possibly because the width of the asymptotic random critical 
regime (or of the crossover regime) is even smaller than in the case of 
ferromagnets. 

KEY WORDS:  Critical phenomena; disordered spin systems; Ising model; 
Monte Carlo simulation. 

1. I N T R O D U C T I O N  

The second-order phase transition from the ferromagnetic state to the 
paramagnetic state of an isotropic pure ferromagnet at the critical tem- 
perature Te is characterized by two independent critical exponents, for 
instance, the exponent ~ of the zero-field susceptibility z(T, H =  0), X ~ t-7, 
and the exponent/~ of the spontaneous magnetization M(T, H =  0), M ~  t ~, 
with t=  [(T-Tc)/Tc[. All other critical exponents describing the critical 
behavior of various thermodynamic quantities, for example, the exponent c~ 
of the zero-field specific heat c(T, H = 0 ) ,  e ~ t  -~, are related to the two 
exponents considered as the independent ones by scaling relations. In the 
language of renormalization theory, (~'2) the critical behavior of such a 
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system is determined by one (stable) fixed point with two relevant 
parameters. 

Outside the asymptotic critical regime the temperature dependence of 
the thermodynamic quantities is more complicated, and there is a wide 
transition regime from the critical behavior to the high-temperature 
behavior. (3) To characterize the temperature dependence outside the 
asymptotic critical regime, Kouvel and Fisher (4) have introduced tem- 
perature-dependent quantities, 

7(T) = (T-- Te)Z dz-'/dr (1) 

~(T)=(Tc--T)MdM I/dT=-(Tc-T)M ldM/dT (2) 

These quantities are constructed in such a way that they approach the 
critical exponents 7 and /~ for T ~  Tc and the values 7 (T~  oo)= 1 
(mean-field value) and / ~ ( T ~ 0 ) = 0  (according to the third law of ther- 
modynamics). As an example, Fig. 1 exhibits the temperature dependence 
of ?(T) and/3(T) for the ferromagnetic model. The quantity 7(T) decreases 
monotonically (3'5) with increasing temperature for all known isotropic pure 
ferromagnets with short-range exchange interactions. 

Introduction of spatial disorder into the system (for instance, by 
diluting with nonmagnetic atoms of concentration x) generates a more 
complicated situation. Because the parameter space of the renormalization 
transformation now is larger, the occurrence of one or more additional 
fixed points is expected. In the following we consider only the possibility of 
one additional physical fixed point; conceivable cases include: (1)the 
critical behavior is still determined by the stable one of the fixed points 
only; (2)the critical behavior is determined by a crossover from an 
unstable fixed point to the stable one (describing the behavior for T--* To). 
In both cases the stable fixed point may be (a)the original fixed point of 
the pure system (x= 0) with pure exponent values, or (b)a random fixed 
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Schematic representation of 7(T) and ,6(T) for an isotropic homogeneous ferromagnet 
with short-range exchange interactions. 
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point, with exponent values different from those of the pure fixed point and 
depending or not depending on x. 

Figure 2 represents qualitatively the possible behavior of y(T) and 
/3(T) for disordered systems. It should be noted that these are only 
schematic plots and that the details should not be taken too literally (for 
instance, the crossover may be extended over more decades). If the 
crossover takes place rapidly and at temperatures very close to Tc, it is 
fully developed in the critical regime (solid lines in Fig. 2). Then there are 
twe temperature ranges for which y(T) and /?(T) exhibit constant values, 
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Fig. 2. Schematic representation of ~/(T) and fl(T) for a crossover between two fixed points, 
which is ( - - )  fully developed or (--)  not fully developed in the critical regime. The exponent 
values for the unstable fixed point may be (a) larger or (b) smaller than the values for the 
stable fixed point. Note that the plots do not represent an adequate description of 7(T) 
outside the critical regime (see text). 
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respectively, corresponding to the two fixed points. The exponent values of 
the unstable fixed point may be larger (Fig. 2a) or smaller (Fig. 2b) than 
those of the stable fixed point. In this case the crossover is described by 
scaling functions, which may be calculated by renormalization theory. 
Alternatively, the crossover regime may be extended, and the crossover 
possibly is not fully developed in the critical temperature range (dashed 
lines in Figs. 2). Then 7(T) and /?(T) may not be described by scaling 
functions up to the maxima in Fig. 2a, for instance, and it is not guaran- 
teed that a renormalization calculation going to temperatures outside the 
critical regime yields reasonable results. If the maxima of 7(T) and /~(T) 
occur far outside the critical regime, then it no longer makes sense to argue 
that the thermodynamic behavior at these temperatures is determined by 
the unstable fixed point. 

Theoretically, the best known conjecture for disordered systems is the 
Harris criterion, which was derived by Harris ~6) from heuristic arguments 
and was confirmed later by various renormalization calculations. ~7-9) It 
states that for weak disorder the pure fixed point remains stable if the 
specific heat exponent ~ of the pure system is negative, as for the d=  3 
Heisenberg model. In contrast, the transition is modified for positive ~, as 
for the pure d=  3 Ising model, and renormalization calculations have 
shown~7 12) that in this case a new stable random fixed point appears. For 
weak disorder the exponent values corresponding to the random fixed 
point were determined by renormalization calculations, ~1~ yielding 
values independent of x. It is expected ~3'14) that the random behavior is 
only developed in a very small asymptotic temperature range, whereas a 
large part of the critical regime is dominated by the crossover from the 
pure Ising model exponents to the random exponents (case 2b, Fig. 2b). 
Thereby the crossover possibly is very slow, so that the asymptotic random 
behavior is never really approached experimentally and some average 
effective exponent is observed. 

A special renormalization treatment by Sobotta and Wagner (~5'16) for 
arbitrary concentration x (not necessarily weak disorder) also conceives 
the critical behavior of random spin systems as a crossover from an 
unstable to a stable fixed point. For Heisenberg systems the stable fixed 
point is the pure one, and for Ising systems it is a different one, but with 
exponent values not essentially different from the homogeneous ones (we 
denote it as a "homogeneous-type" fixed point in the following). The 
unstable fixed point exhibits (Fisher-renormalized) critical exponents iden- 
tical to the spherical exponents in three dimensions, independent of the 
order parameter dimension n. The crossover between the two fixed points is 
fully developed for systems close to the percolation concentration, i.e., the 
main part of the critical regime is then determined by the spherical 
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exponent values (similar to Fig. 2a, solid lines), whereas for a smaller 
concentration of nonmagnetic atoms the experiments yield concentration- 
dependent effective (i.e., average) exponents. According to ref. 16, the 
asymptotic critical regime with homogeneous-type exponents is extremely 
small for all concentrations (It[ < 10-8). In this theory, the stable fixed 
point is always the homogeneous-type fixed point (our case 2a), whereas in 
the renormalization calculations for weakly disordered Ising systems (1~ 
the stable fixed point is the random one (case 2b). 

The results from Monte Carlo simulations are also not conclusive so 
far. A finite-size scaling analysis for small, site-diluted, simple cubic Ising 
ferromagnets ~17) was consistent with pure exponent values. This might 
correspond to our case la, or to case 2b with a very small asymptotic 
random regime not accessed by the simulations for small systems. Indeed, 
Monte Carlo simulations for large Ising ferromagnets with weak dilution 
revealed (18~/~ values increasing continuously with increasing concentration 
x of nonmagnetic atoms. This might correspond to case lb. Alternatively, 
taking the results of both simulations (17'18) seriously suggests an inter- 
pretation according to case 2b: There is a small asymptotic critical regime 
corresponding to a random fixed point (not accessed by the simulations of 
Landau~17)), whereas the main part of the critical regime is dominated by 
the pure fixed point (Fig. 2b). Because even the large-system simulation of 
ref. 18 probably is not able to resolve the crossover, it yields effective, 
average exponent values for the considered temperature range which 
depend on concentration x because the width of the asymptotic regime or 
the width of the crossover regime may depend on x. Altogether, the Monte 
Carlo results suggest a flow from the unstable pure or homogeneous-type 
fixed point to the stable random fixed point, in agreement with the tenor- 
realization calculations of refs. 10-12 and in disagreement with refs. 15 
and 16. 

Outside the critical regime a nonmonotonic temperature dependence 
of 7(T) was found by Monte Carlo simulations ~5'19) for diluted Ising 
ferromagnets, similar to the behavior of the dashed line in Fig. 2a. 
However, because the maximum of ~(T) appears at rather high tem- 
peratures, T = ( 1 . 1 - 2 )  To, this behavior of 7(T) (which is germane for a 
large class of disordered spin systems ~5)) does not represent a critical 
phenomenon (see above discussion) and is not considered further in this 
paper. It is also not included in the schematical Fig. 2. 

Experimentally the situation is also not clear. The site-diluted d =  3 
Ising antiferromagnet Fe l_xZnxF2 revealed (2~ exponent values consistent 
with those derived by ref. 12 for the random Ising fixed point in a rather 
large temperature range, 2x 10-3~<t~< 10 -1. This would correspond to 
our case lb. However, it cannot be excluded that there is a very slow 
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crossover between two fixed points (case2) in this temperature range, 
yielding an average exponent value which agrees accidentally with the 
theoretical random exponent value. Similarily, a study (14) of the random 
Ising antiferromagnet Mn0.864Zn0.136F 2 for 5 x 10 -4 ~ t <~ 2 x 10 -2 yields a 
fi value consistent with the prediction of a very slow crossover. For 
dysprosium aluminum garnet (21) the perhaps effective /3 value increased 
from f l=0.330_0.012 for the pure system to f l=0.35+0.01 
(/3=0.385_+0.025) for the diluted model with 1 at % (5at  %) of non- 
magnetic yttrium. A detailed M6ssbauer investigation ~22) of the diluted 
Ising antiferromagnet Fel_xZnxF2 revealed an abrupt crossover in the 
value of the/3 exponent from a concentration-independent value of/3 = 0.36 
below a crossover temperature tc to the pure exponent value of/3 = 0.33 
above t c (our case 2b, solid line in Fig. 2b). 

In this paper we report on Monte Carlo simulations for pure and site- 
diluted Ising ferro and ferrimagnets. In Section 2.1 simulations for small 
ferromagnets are performed and analyzed by finite-size scaling theory, 
using the data collapsing method. It is shown that we cannot derive reliable 
exponent values from this method. In Section2.2 the Monte Carlo 
simulation for large systems is evaluated and tested by repeating the 
calculations of ref. 18 for the ferromagnetic model. In Section 3 we extend 
the calculations to the pure and site-diluted Ising ferrimagnet (S = 1/1). To 
our knowledge there is no Monte Carlo study of the ferrimagnetic 
transition at all (recent Monte Carlo studies ~23'24~ consider a rather large 
temperature range and do not represent systematic investigations for the 
critical regime). For the homogeneous ferrimagnet it was conjectured (25) 
from results of high-temperature series expansions that its critical behavior 
is identical to the one of corresponding ferromagnets, in agreement with 
recent experimental results ~26) for Heisenberg ferrimagnets. As in the case of 
ferromagnets, no influence of structural disorder on the critical behavior 
was found (26) in these systems. In the present Monte Carlo study for pure 
and diluted (x -- 0.1, 0.2) Ising ferrimagnets the /3 values appear to be 
independent of x and within the error limits indeed consistent with the 
value for the pure ferromagnet. Conclusions are given in Section 4. 

2. M O N T E  CARLO S I M U L A T I O N S  FOR THE ISING 
F E R R O M A G N E T S  

In this section we exemplify the Monte Carlo technique presently used 
by dealing with pure and site-diluted simple cubic Ising ferromagnets with 
N 3 sites and periodic boundary conditions. The model is described by the 
Hamiltonian 

I~= - J  y~ S i S j ~ j  (3) 
(6) 

with S i=  _+1, J > 0 ,  and summation over all nearest neighbor pairs (0'). 
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The occupation number r has the value 1 (0) if site i is occupied by a 
magnetic (nonmagnetic) atom. The diluted systems are generated by 
selecting randomly a site of the lattice and inserting at this site a magnetic 
atom, if it is not already occupied by a magnetic atom. Then the procedure 
is repeated until ( 1 - x )  N 3 magnetic atoms are distributed randomly on 
the lattice, and the nonmagnetic atoms are placed on the other sites. 

We apply the usual Monte Carlo technique described, for instance, in 
refs. 17, 18, and 27-29. The program starts with a ferromagnetic or random 
initial spin configuration for the highest considered temperature, respec- 
tively, whereas it chooses as initial configuration for the next (lower) tem- 
perature the spin configuration after the last Monte Carlo step per spin for 
the preceding temperature. The first 10% of the Monte Carlo steps per 
spin are discarded for each temperature to allow for a relaxation to thermal 
equilibrium. In the following the temperature is normalized to IJl/kB and 
the magnetization values are normalized to the maximum values obtained 
for perfect magnetic order. 

2.1. Simulations for Small Ising Ferromagnets 

In this section we perform Monte Carlo simulations for small systems, 
N =  6, 8, 10, 14, and 20, and we analyze the data within the framework of 
finite-size scaling analysis by the data collapsing method. (27 31) The 
calculations of Landau, (27'31) for instance, qualitatively confirmed finite-size 
scaling for the two- and three-dimensional Ising model. The disadvantage is 
that it needs a fit of three parameters simultaneously, for instance, T~, /~, 
and the correlation exponent v. Alternatively, one may assume a certain 
value, for example, for the exponent v, insert a value of Tc obtained by 
another type of scaling plot, and obtain the /~ exponent by the data 
collapsing method. In any case, it turns out that a good data collapse may 
be obtained for several combinations of values T c, /~, and v. It is the 
purpose of the present section to illustrate this disadvantage of the method, 
which has been outlined already in other papers (see, for instance, ref. 29). 
It will be shown explicitly that (contrary to a still widespread opinion) the 
method does not allow an adequate discussion of critical phenomena. 

To calculate the thermodynamic averages, the spin configurations after 
each Monte Carlo step per spin have been used (after discarding the first 
10%). For the pure model (x=0),  up to 2x 10 4 ( 5 •  3) Monte Carlo 
steps per spin are performed for N~< 10 (N~> 14) and a ferromagnetic initial 
spin configuration is used for the highest temperature. Two runs are made 
for each temperature, one with a random selection of spins for the spin-flip 
trials and one which proceeds through the lattice in ordered sequence. For 
the random selection the statistical fluctuations of M, c, and Z are larger 
than for the ordered succession, and, for instance, the specific heat peak 

822/52/3-4-17 
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occurs at slightly higher temperatures. The final results for M(T) are 
obtained by averaging over the two runs. Close to Tc the thermodynamic 
quantities are calculated for temperatures in steps of AT=0.01. On this 
scale the temperature dependence of Z and c, respectively, exhibits a 
shoulder rather than a sharp peak near T,,, sometimes with several maxima 
resulting from statistical fluctuations. We define the pseudocritical tem- 
perature To(N) of the finite system as the temperature for which the 
absolute maximum of c (of X) occurs when proceeding through the lattice 
in ordered succession for the spin-flip trials. Because the location of the 
absolute maximum on the shoulder is determined by statistical fluctuations, 
there are statistical errors of T,.(N), yielding the error bars in Fig. 3. 
Furthermore, there is a systematic error due to the uncertainty of whether 
T,.(N) should be defined via the c or the Z maxima. As shown in Fig. 3, for 
finite systems these two maxima occur at different temperatures. (27) The 
critical temperature of the infinite system Tc(oo) is calculated from the 
finite-size scaling plot (Fig. 3), T~.(N) versus N -~, with 2=  1Iv. For the 
exponent v of the correlation length we insert v = 0.64, in accordance with 
ref. 31. From the specific heat data we obtain for the pure model 
To(o o )=  4.503 when including To(6) or Tc(oo)= 4.486 when omitting Tc(6) 
from the scaling plot as in Fig. 3 [possibly Tc(6) is already outside the 
asymptotic regime of the plot, as is also indicated in Figs. 4 and 5]. From 
the susceptibility data we find Tc(0o)=4.513 when omitting Tc(6). The 
error for Tc(oo) due to the statistical fluctuations of T~(N) amount to 
ATe= +0.008 for the c and Z data when omitting T~(6), whereas the 
above-discussed systematic error, i.e., the difference in Tc(oo) between the Z 
and c data, is ATc = 0.027. 

The critical exponent fl is determined from the fnite-size scaling plot, 
MN 1~/~ v e r s u s  tN 1/v, with t=  I[T-Tc(~)]/Tc(oo)l. It depends very sen- 
sitively on the value inserted for T~(~). With Tc(OO)=4.515, for example, 
an optimuum data collapse for the pure model is found (Fig. 4) for 
fl=0.312, a value obtained by Landau (3~) and close to fl=0.325 deter- 
mined from renormalization theory. (32) For T~(oo)=4.50, which is also 
within the error limit of Tc(oo), the scaling plot yields fl=0.270 (Fig. 5), 
whereas the plot for Tc(~)=4.50 but fl=0.312 is much worse (Fig. 6). In 
Figs. 4-6 the circles according to the N = 6 data are included, but possibly 
they are already outside the asymptotic regime of the plot. 

For the site-diluted ferromagnets we perform 5000 (2000, 1000) Monte 
Carlo steps per spin for N =  6 (10, 20) and x = 0.2, 0.4. Two different ran- 
dom initial spin configurations are used for the highest considered tem- 
peratures, respectively. Furthermore, two different structural configurations 
are considered for each concentration. Finally, the data for the ther- 
modynamic quantities are averaged over all four runs. A random selection 
for the spin-flip trials is performed. 
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Fig. 3. Finite-size scaling plot for the pseudocritical temperatures of the pure Ising 
ferromagnet from the maxima in ([]) c and (A) %. The lines represent the corresponding 
least-mean-square fits. The two data sets are sligthly shifted with respect to the N-1/v axis to 
avoid overlap of the error bars. 
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Finite-size scaling plot for the magnetization of the pure model, with T,(oo)= 4.50 
and ~ = 0.27. 

The determination of the critical temperatures is now even less 
accurate than for the pure model. Due to the large statistical fluctuations, it 
is not reasonable to locate To(N) with accuracy better than ATe= +0.1. 
Furthermore,  there is again a possible systematic error due to the difference 
in the peak location for the c and ;~ data. For  example, for x = 0.2 (0.4) and 
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in Fig. 5, but now with/~ =0.3t2. 
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N = 2 0  we obtain from the susceptibility peak T~(20)= 3.5 (2.4), whereas 
the specific heat peak yields Te(20)=3.3 (2.3). As in the paper of 
Landau, (17/ the exponent /3 of the diluted model is determined from the 
slope of the plot In M ( N )  versus In ] [ r -  Tc(N)]/T~.(N)[, in fact for the 
largest system (N=20) .  As shown in Fig. 7, this yields for x = 0 . 2  an 
exponent/~ = 0.30 when inserting To(20) = 3.5 from the )~ peak, b u t / / =  0.15 
for Tc(20)= 3.3 from the c peak. Furthermore, it becomes obvious from 
Fig. 7 that due to the large uncertainty in the determination of To(20), we 
possibly can never approach the asymptotic regime, but we probably 
obtain an average exponent value for a rather large temperature range. 

Altogether, we conclude that we are not able to obtain reliable 
exponent values from our Monte Carlo simulations for small systems when 
applying the finite-size scaling analysis via the data collapsing method (or 
when analyzing by double-logarithmic plots). To extract accurate critical 
exponent values on the basis of Monte Carlo results for finite systems, 
more appropriate techniques must be used. A possible candidate is the 
cumulant method discussed, for example, by Binder, (29) Landau and 
Binder, (33) and Barber etal. (34~ One advantage of this method is that T,, 
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and the exponent values are estimated in an independent way. Further- 
more, one can take into account effects due to corrections to scaling in a 
reasonable way for N > 2 4  in the case of the three-dimensional Ising 
model. (34) In the following sections we use an alternative method, i.e., the 
simulation of large systems. This method allows for an analysis of the 
magnetization along the same line as commonly used for experimental 
data. (26'35'36) As in the case of the cumulant method, the main advantage of 
this method is that the exponent value may determined without any 
accurate knowledge of T c. Furthermore, finite-size effects are less important 
from the very beginning. 

2.2. S imulat ions for  Large Ising Ferromagnets 

In this section we perform simulations for large Ising ferromagnets 
(N= 30 for the pure model, N =  40 for the diluted model) similar to those 
described by ref. 18. The basic ideas are: 

1. For very large systems the finite-size effect is rather small, and the 
thermodynamic behavior resembles very much that of an infinite 
system. We then can avoid the finite-size scaling plots and analyze 
the data for the biggest system size. ~18) 

2. Only small defect concentrations, x ~< 0.2, are considered. Then the 
detailed configuration has no observable influence on the ther- 
modynamic quantities, and there is no need for a configurational 
average. 

3. Combining the large lattice size with a large number of Monte 
Carlo steps per spin (104) yields rather small statistical fluc- 
tuations of the data, and there is no need for an average over 
several runs. 

4. Only the magnetization data are analyzed, because they exhibit 
much smaller statistical fluctuations (Fig. 8) than those for c and Z 
(the latter quantities are related to thermodynamic fluctuations via 
the fluctuation-dissipation relation). 

5. The crucial point in the analysis of the small-system data is the 
uncertainty in the determination of the critical temperature. 
Because for the present simulation of large systems the statistical 
fluctuations of the magnetization data are rather small, we can 
determine the exponent // by the so-called Kouvel-Fisher 
analysis, ~4) which does not require an accurate knowledge of T~. 
from the very beginning. 
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According to Eq. (2), the quantity f = M ( d M / d T )  -1 is represented as 
function of T. For T ~ Tc the data are arranged around a straight line. The 
inverse slope of this line represents fl, and the intersection with the T axis 
yields T,, (Fig. 9) (in Fig. 9 we omit the data for the three highest tem- 
peratures in Fig. 8 to avoid finite-size effects). Significant deviations from 
the straight line occur for the low-temperature data (in Fig. 9 only for the 
lowest one), indicating that the critical regime has been left. For the least 
mean square fit of the straight line we omit these data. Because in general 
the onset of deviations from the straight line is not precisely defined, the 
obtained values of fl and Tc (and the corresponding error limits, see below) 
depend to some extent on our definition of the width of the critical regime. 
This problem is well known from the Kouvel-Fisher analysis of all 
experimental data. (26,3s,36) With those values for fl and Tc we calculate the 
critical amplitude B according to M = Bt ~ by minimizing the quantity 

S = ~ ( M ~ -  Bt~) 2 (4) 
i 

Here Mi denotes the magnetization data at reduced temperatures t~= 
] [ T i -  T,(N)]/T,(N)I ,  with N =  30 (40) for the pure (diluted) model. 



788 Braun and F~hnle 

0. ' ' ' '  

.2 

-.4 

.6 

-.8 

T 

4.3 4.35 4.4 4.45 4.5 4.55 
i i i i i ] ~ i i i i i L J i i i i ~ l  [ . / % ,  i 

, /  

/ 

A 

Fig. 9. Temperature dependence of f = M(dM/dT)-1 as calculated from the data in Fig. 8. 
The straight line represents a least-mean-square fit. 

Simulations are performed on this line, starting with a random initial 
spin configuration for the highest considered temperature. We proceed 
through the lattice in ordered succession for the spin-flip trials, and we 
calculate the thermodynamic averages by considering the spin con- 
figurations after four completed Monte Carlo steps per spin, respectively, 
to avoid correlations between successive measurements. (18) The simulations 
are performed for temperature steps AT= 0.02. We have used 10 4 Monte 
Carlo steps per spin. Because the largest relaxation mode z near criticality 
scales according to ~ ~ N z, where z ~ 2 is the dynamical exponent, it is 
reasonable to assume that the appropriate number of Monte Carlo steps 
also scales like N 2. In his simulations for the diluted simple cubic Ising 
model Landau (17] kept up to 5000 Monte Carlo steps per spin for N~< 30. 
For our pure model ( N =  30) we thus use about twice as many steps as 
Landau. Extrapolating from Landau's number for N = 3 0  to the 
appropriate number for N = 40 (as for our diluted model) yields 9000 steps, 
which exactly represents the number of steps we kept after discarding the 
first 10%. Our number of Monte Carlo steps per spin is also comparable 
to that used by ref. 18, namely 5000-11,000 steps for N = 3 0 ,  40. For  the 
ferrimagnetic model (Section 3) we use an even larger number of Monte 
Carlo steps per spin, namely 1.5 x 104. 
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For a calculation of the quantity dM/dT we represent the 
magnetization by a cubic spline, which does not smooth the fluctuations, 
but connects the data continuously and with continuous first and second 
derivative. As a result, small fluctuations in M induce fluctuations of f =  
M(dM/dT) l and a scatter of the data in the f(T) plot. This produces an 
error for the inverse slope of this line and its T-axis intersection, respec- 
tively. It should be noted, however, that those errors are not identical with 
the errors for/~ and Tc due to the magnetization fluctuations. To obtain 
those latter error limits, one would have to calculate the propagation of the 
error in M(T) to the error in f(T).  This, however, is impossible, because 
the spline procedure and the differentiation dM/dT relate the fluctuations 
in both plots in a very complicated and not obvious manner. The errors A/3 
and A T c from the f(T) plot thus only represent estimates for the real errors 
for /~ and To. As discussed above, these error limits also depend to some 
extent on the definition of the width of the critical regime. The error limit 
for B is then estimated by minimizing S [Eq. (4)], thereby combining the 
upper (lower) value of/~, i.e.,/? + ~/~ ( / ? -  A/3), with the upper (lower) value 
of T~, i.e., To+AT c (Tc-ATc). 

For the pure ferromagnetic Ising model we obtain /~ = 0.304 + 0.03, 
T~. = 4.513 • 0.009, and B = 1,49 _+ 0.13. For comparison, series 
expansions (37) yield 0.303 ~</~ ~< 0.318, Tc = 4.5108, and B = 1.569 • 0.003. 
The simulations of ref. 18 give/~=0.30• Tc=4.510+0.004, and B =  
1.5 • 0.2, and renormalization calculations find /3 = 0.325 _+ 0.001 ~32) and 
Tc=4.5115 ___0.0001. ~38) For the site-diluted model with x = 0 . 2  we obtain 
/3=0.392+0.03, T~= 3.513 -+ 0.007, and B=1.78__0.14, which compares 
to /3 = 0.385 -+ 0.015, T~. = 3.510 __% 0.003, and B = 1,76 + 0.1 from ref. 18. 
Obviously the/~ value for the site-diluted model is definitely larger than the 
value for the pure model. A possible interpretation is given in Section 1. 

It should be noted that it is impossible to perform a corresponding 
Kouvel-Fisher analysis for our susceptibility data, because the scatter in 
the data is still too large for this type of analysis. One may try to improve 
the statistics by increasing the number of Monte Carlo steps per spin. 
Apart from the fact that we do not have that much computer time, we 
doubt that an arbitrary increase of the number of Monte Carlo steps per 
spin necessarily improves the accuracy of the susceptibility data. For very 
long calculation times the entire lattice may be overturned several times, 
which affects the susceptibility data. (2v) We therefore did not attempt to 
consider the susceptibility along a similar line as the magnetization. 
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3. M O N T E  CARLO S I M U L A T I O N S  FOR LARGE ISING 
F E R R I M A G N E T S  

In this section we extend the calculations to pure and diluted Ising 
ferrimagnets on a simple cubic lattice (N3sites), described by the 
Hamiltonian 

H = - J ~  A B Si Smr m (5) 
i~ m 

with J < 0. The sum runs over all spins S:  = _+ 1/2 on the A sublattice and 
over all nearest neighbors S~ (with values 0 or -t-_ 1) of the spins S:, respec- 
tively, on the B sublattice. The occupation number ~i, for instance, has the 
value of 1 (0) if site i is occupied by a magnetic (nonmagnetic) atom, and 
we distribute by the procedure described in Section 2 exactly (1 -x )N3/2  
magnetic atoms randomly on each sublattice. 

Earlier simulations of this model (23) have shown that, for instance, the 
susceptibility of the strongly diluted system with N--14 exhibits rather 
large statistical fluctuations, which could not be considerably reduced by 
increasing the number of Monte Carlo steps per spin. We therefore perform 
the following simulations for large systems (N= 30 for the pure model, 
N = 4 0  for the diluted model) and small disorder (x=0.1, 0.2), and we 
analyze only the magnetization data by the Kouvel-Fisher method, as 
described in Section 2.2. The exponent fl is determined from the sublattice 
magnetizations MA and MB (except for the pure model) 

MA = Z S{r M~ = Z Sflej (6) 
i j 

the magnetization M, 

M = MA + MB (7) 

and the staggered magnetization Ms, 

Ms  = MA-- M8 (8) 

Within the error limits the fl values obtained from these four quantities are 
expected to be equal, in accordance with the experimental results (39) for 
magnetite, Fe30 4. In the following all magnetization data are normalized 
to the maximum possible staggered magnetization for perfect ferrimagnetic 
order. 

The Monte Carlo procedure and the data analysis are along the same 
line as for large Ising ferromagnets (Section 2.2), with 1.5 x 10 4 Monte 
Carlo steps per spin for each temperature. As an example, Fig. 10 shows 
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Fig. 10. Temperature dependence of the magnetization for the ferrimagnetic model with 

x = 0 ,  0.1, and 0.2. 

the magnetization data. Because the scatter of the M data is even smaller 
than for the ferromagnetic model, the error limits for/~, T,., and B are also 
smaller. 

Tables I-III represent the values of/~, To, and B as determined from 
the Kouvel-Fisher plots for Ms, M, MA, and Ms. The corresponding 
error estimates are determined from the f(T) plot. Within the error limits 
the fl values obtained from Ms, M, MA, and MB are roughly equal and 
consistent with the value of/~ = 0.325 _+ 0.001 as determined for the pure 
Ising ferromagnet from renormalization calculations (3z) (we doubt that the 
small but seemingly systematic raise of the/3 values from the M data has 

Table m. The [~ Values for the Pure and Diluted Ferr imagnet As Determined 
from M s , M ,  M A ,  and M B  

fl 

x Ms M MA M~ 

0.0 0.336 _+ 0.015 0.353 + 0.013 - -  - -  

0.1 0.323 + 0.024 0.341 • 0.023 0.316 __+ 0.024 0.326 + 0.024 

0.2 0.318 _+ 0.014 0.336 • 0.018 0.312 _ 0.014 0.322 _+ 0.015 
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Table II. 
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The Critical Temperature T c for the Pure and Diluted Ferrimagnet 
As Determined from M s , M ,  M A, and M a 

Tc 

x M s M M A M B 

0.0 1.900 + 0 . 0 0 2  1 . 9 0 1  _ 0 . 0 0 2  - -  - -  

0 . 1  1.693 _+ 0.004 1.695 + 0.003 1.693 + 0.004 1.694 _+ 0.004 
0.2 1.484 _+ 0.002 1.485 _+ 0.002 1.483 + 0.002 1.484 _+ 0.002 

any physical meaning).  For  the pure ferrimagnet we obtain To=  
1.900 + 0.002, which compares  to Tc = 1.92 + 0.04 from high-temperature 
series expansions. (4~ Fur thermore ,  within the error limits we cannot  detect 
an influence of  dilution on the/3 value of ferrimagnetic systems, in contrast  
to the results for ferromagnetic  systems. Possibly the width of  the crossover 
regime is smaller than for diluted ferromagnets,  so that  it cannot  be 
accessed even by our  simulations for large systems. 

4.  C O N C L U S I O N S  

In this paper  we have reported on Monte  Carlo simulations for pure 
and diluted Ising ferro- and ferrimagnets on a simple cubic lattice with N 3 
sites and impuri ty  concentra t ion x. Due  to the statistical error in the deter- 
minat ion of  the critical temperature Tc reliable exponent  values could not  
be obtained by simulations of small systems ( N 4  20) with finite-size scaling 
analysis via the data  collapsing method.  Instead we have performed 
simulations for large systems (up to N =  40) with rather small statistical 
fluctuations of the magnet izat ion data. This allows for a determinat ion of 
the exponent  fl from a Kouve l -F i she r  plot, which does not  require the 

Table III. The Critical Amplitude B for M s ,  M ,  M A, and M a for the 
Pure and Diluted Ferrimagnet 

B 

x M s M M A M s 

0.0 1.52 ___ 0.06 0.42 _ 0.015 - -  - -  
0.1 1.41 +__ 0.08 0.39 ___ 0.03 0.51 +_ 0.03 0.90 _+ 0.05 
0.2 1.34 _ 0.05 0.38 ___ 0.02 0.49 + 0.01 0.86 _ 0.04 
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knowledge of  an accurate Tc value from the very beginning. For  the diluted 
ferromagnet  with x = 0.2 a /? value of 0.392 + 0.03 was found, which is 
larger than the value of /~ = 0.304 + 0.03 for the pure model. This proves 
that  the phase transit ion of the diluted Ising ferromagnet  is not  determined 
only by the pure Ising fixed point. The fl value for the pure Ising 
ferrimagnet is consistent with that  of the pure Ising ferromagnet,  and the 
T c value agrees with the critical temperature found by Schofield and 
Bowers (4~ from high-temperature  series expansions. Within the error  limits 
no influence of dilution on the/~ value of ferrimagnets could be detected for 
x = 0.i and x =0 .2 ,  possibly because the width of the r a n d o m  asymptot ic  
critical regime or  of  the crossover regime is even smaller than in the case of  
ferromagnets.  

It is p lanned to speed up the Monte  Carlo calculations by a multispin 
coding algori thm (4t) for simulations of  even larger systems, and to at tack 
the problem of diluted d =  3 ferro- and ferrimagnets by means of  a Monte  
Carlo renormalizat ion calculation. (38) 
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